Tampilkan postingan dengan label Propagasi. Tampilkan semua postingan
Tampilkan postingan dengan label Propagasi. Tampilkan semua postingan

Model Path Loss SUI untuk Perhitungan Progagasi 5G

Model path loss propagasi untuk perencanaan jaringan seluler generasi kelima (5G) dalam spektrum milimeter wave (mmwave) atau high-band, seperti spektrum frekeunsi 28 GHz dan 38 GHz. Terlihat bahwa dengan implementasi 5G dengan mmwave (high-band) didaptkan jumlah 5G base station (sel 200 m) sekitar tiga kali lebih banyak dibandingkan dengan sistem 3G dan 4G (sel 500 m hingga 1 km).

No alt text provided for this image

Namun penggunaan mmwave (high-band) menghasilkan keunggulan dalam hal peningkatan kapasitas yang lebih besar dan juga speed dari teknologi sebelumnya.

Model path loss memainkan peranan utama dalam perencanaan sistem seluler nirkabel. Model – model tersebut mewakili beberapa persamaan matematika dan algoritma yang digunakan untuk meramal propagasi sinyal radio di daerah tertentu. Secara umum, model kanal propagasi dapat dikelompokan menjadi tiga kelompok besar, yaitu :


  • Model Empirik 

Merupakan model yang diturunkan dari hasil pengukuran lapangan di lokasi-lokasi yang dianggap mewakili sampel lingkungan nirkabel.


  • Model Deterministik 

Merupakan model yang dikembangkan dari teori propagasi gelombang elektromagnetik dan digunakan untuk perhitungan daya pancar di lokasi yang ditinjau. 

  • Model Stokastik 

Merupakan model yang menyertakan peubah acak sebagai representasi kondisi lingkungan yang berubah dari waktu ke waktu dan dari satu lokasi ke lokasi lain.

Dari ketiga model kanal propagasi di atas, model kanal propagasi empirik merupakan model yang paling banyak digunakan untuk penelitian karena kemudahan penggunaan serta toleransi terhadap ketidaktersediaan informasi area.

Model Empirik selanjutnya membagi dua bagian yaitu, dispersif waktu dan dispersif non waktu. Model dispersif waktu adalah model untuk memprediksi path loss dari hasil pengukuran kanal propagasi. Sementara model dispersif non waktu adalah model untuk memprediksi rata – rata path loss dari fungsi jarak, tinggi antena, frekuensi, dan lain – lain.

Model Path Loss SUI (Stanford University Interim)

Model Stanford adalah perluasan dari model Hata dengan parameter koreksi tambahan untuk frekuensi di atas 1900 MHz. Model SUI dapat digunakan untuk ketinggian antena base station dari 10 m hingga 80 m, tinggi antena penerima berkisar dari 2-10m, jari-jari sel dari 100 m – 8 km. Apa yang signifikan dalam model ini adalah keberadaan variabel acak, path loss eksponen, γ dan standar deviasi fading, s. Model ini memiliki tiga jenis area (wilayah) yang disebut A, B, dan C.

- "Tipe A" mewakili wilayah dengan path loss tertinggi dan dapat digunakan untuk daerah berbukit dengan vegetasi sedang atau sangat padat. Daerah perkotaan padat penduduk masuk dalam tipe A ini.

- "Tipe B" digunakan untuk wilayah berbukit dengan vegetasi langka, atau dataran datar dengan kepadatan pohon sedang atau berat. Path loss pada tipe ini nilainya di pertengahan, lingkungan sub urban (pinggir kota) masuk dalam tipe B ini. 

- "Tipe C" cocok untuk dataran datar atau pedesaan (rural) dengan vegetasi ringan, di sini path loss nilainya minimum.

Model SUI yang dikembangkan oleh Stanford University, diusulkan sebagai standar dalam pemodelan kanal pada pita frekuensi di bawah 11 GHz oleh dari IEEE 802.16 Broadband Wireless Access working group. 

Persamaan dasar untuk path loss model SUI untuk d> d0 adalah:
No alt text provided for this image

Dimana;

  • d, (dalam meters ) adalah jarak antara base station dan UE. 
  • d0 = 100 m 
  • Xf, adalah faktor koreksi untuk frekuensi di atas 2 GHz (dalam MHz). 
  • Xh, adalah faktor koreksi untuk tinggi antena penerima. 
  • sh, adalah faktor koreksi untuk efek shadowing (dalam dB), nilainya berkisar 8.2 dB sampai 10.6 dB.
  • γ adalah komponen path loss, yang nilainya adalah :
> γ = a – b . hb + (c/hb)
> Untuk area urban / perkotaan yang Line Of Sight (LOS) nilai γ =2, untuk perkotaan yang Non LOS (NLOS) nilai 3< γ >5.
> hb  adalah tinggi antena base station (dalam meter)


a, b dan c adalah konstanta yang nilainya tergantung pada tipe area (A, B atau C), nilainya ditunjukan pada tabel di bawah ini:

No alt text provided for this image

Faktor koreksi untuk frekuensi dan faktor koreksi untuk tinggi antena penerima untuk model SUI adalah :

Xf = 6.0 * log (f / 2000) 
Xh = - 10.8 * log (hr / 2000) untuk tipe area A and B 
Xh = - 20 log (hr / 2000) untuk tipe area C 
*f adalah frekuensi dalam MHz, 
*hr adalah tinggi antena penerima dalam meter.

Sementara untuk model path loss lain yang sudah terkenal diantaranya Okumura Hata, Cost 231, Lee, Ericsson, ECC 33, maupun Walfisch-Ikegami. Kadang dalam sebuah perhitungan penelitian sebuah model cocok / mendekati dengan hasil pengukuran lapangan, tetapi tidak jarang juga di penelitian lain mendapatkan hasil yang lain, model lain yang lebih mendekati.

Perlu juga diperhatikan frekuensi yang digunakan, misalnya mid-band frekuensi 5G yang favorit 3,5 GHz. Hasilnya kadang untuk daerah urban satu model path loss cocok, tetapi untuk sub urban dan rural kurang cocok, atau mempunyai deviasi yang jauh, begitu juga sebaliknya.

Berikut ini contoh hasil penelitian yang dilakukan oleh Department of Electrical Engineering Blekinge Institute of Technology, Karlskrona Swedia. Pada penelitian ini, tinggi antena pemancar yang digunakan adalah 20 m, power transmit yang digunakan adalah 43 dBm, dengan frekuensi operasi adalah 3,5 GHz.

No alt text provided for this image

No alt text provided for this image

No alt text provided for this image

Model Propagasi Okumura-hata

Propagasi merupakan suatu proses gelombang merambat dari satu tempat ke tempat yang lainnya. Pemodelan propagasi gelombang radio dikembangkan dalam memberikan pendekatan suatu propagasi gelombang radio yang akan dirancang. Dalam membuat pemodelan gelombang radio harus disesuaikan dengan kondisi lingkungan yang akan rancang yang bertujuan untuk memberikan prediksi besarnya path loss antara transmitter dengan receiver.

Dalam melakukan perancangan sistem komunikasi radio diperlukannya mengetahui karakteristik propagasi radionya, dengan mengetahui redaman  yang akan terjadi sehingga dapat diprediksi luas cakupan sel yang diinginkan. Dalam melakukan pemodelan progasi tertadapat beberapa faktor diantaranya yaitu lingkungan antara site pengirim dengan site penerima. frekunesi yang digunakan dan mobilitas user pengirim dan penerima. Pemodelan gelombang radio yang paling sering dikenal adalah pemodelan Okumura-Hata dan Walfish-Ikegami. Pemodelan Okumura-Hata digunakan untuk jangkauan daerah yang luas sedangkan Walfish-Ikegami untuk jangkauan daerah yang kecil.

Berikut dibawah ini jenis -jenis pemodelan propagasi:

1. Model Okumura-Hata
Model Okumura-Hata merupakan pemodelan propagasi yang biasanya digunakan dengan jangkauan daerahnya yang luas. Dalam melakukan percobaannya di kota Tokyo Okumura dan Hata mengukur level sinyal yang diterima dibanyak titik  di kota Tokyo. Kemudian dari hasi pengukuran tersebut dibuatlah pemodelan emipiris sehingga dapat digunakan di kota lainnya dengan kemiripan karakteristik kota Tokyo atau daerah urban.

2. Model Walfish-Ikegami
Model Walfish-Ikegami merupakan pemodelan empiris dari propagasi gelombang radio yang digunakan di daerah urban dengan luas cangkupan yang kecil dan BTS yang digunakan terletak diatas atap gedung.

3. Model Ray Tracing

Model Ray Tracing merupakan pemodelan yang mengasumsikan bahwa partikel atau gelombang dapat dimodelkan sebagai seumlah besar berkas sinar yang sangat sempit dan digunakan sebagai perkiraan dari propagasi. Jumlah dari reflaksi dan difraksi yang akan dihitung tergantung kepada algoritma dari network planning tool yang digunakan.

Dari ketiga pemodelan propagasi radio diatas, dapat dipilih salah satu yang digunakandalam melakukan perancangan jaringan radio. Karena pada dasarnya perencanaan jaringan radio tidak terdapat standar buku yang harus dilakukan dalam membangun sebuah jaringan nirkabel. Proses perencanaan radio dipengerahui oleh tipe proyek, kualitas dan target yang akan dicapai dalam membangun jaringan, sehingga kita harus melihat kembali tujuan perencanaannya. Biasanya hal yang sulit dalam melakukan perencanaan jaringan radio yaitu menggabungkan seluruh syarat dan kebutuhan secara optimal dan mendesain dengan biaya yang efisien.


*Note: Empiris adalah suatu keadaan yang berdasarkan pada kejadian nyata yang pernah dialami yang didapat melalui penelitian, observasi, maupun eksperimen.

Sumber:

- Putra, Ardyan I P., 2010, Perencanaan Tahap Awal Jaringan Radio untuk Komunikasi Keselamatan Publik pada Frekuensi 700 Mhz di Wilayah DKI Jakarta, Universitas Indonesia, Jakarta.

Pengantar Antena Yagi-Uda

Antena yagi-uda ditemukan pertama kali oleh Shintaro Uda and Hidetsugu Yagi di tahun 1926. Antena ini sebenarnya adalah hasil karya dari Shintaro Uda dan sudah dipublish di Jepang, karena ingin dipresentasikan ke luar jepang Shintaro Uda tidak bisa berbahasa inggris untuk itu dia menunjuk profesornya yaitu Hidetsugu Yagi. Antena yagi-uda biasanya kebanyakan digunakan untuk penangkapan siaran televisi dibeberapa dekade ini. Antena ini banyak diguanakan karena performanya yang bagus dan mudah dalam pabrikasi. Antena yagi-uda kebanyak bekerja pada frekuensi UHF (300 MHz - 3 Ghz) dan tidak menutup kemungkinan untuk dapat bekerja difrekuensi selain UHF. Selain itu antena ini juga kebanyakan dipasang diatas rumah-rumah, dan bentuk dari antena yagi-uda dapat dilihat dibawah ini.
Image result for yagi antenna theory
Struktur Antena Yagi-Uda

Antena yagi-uda terdiri dari 4 bagian yaitu, driven element, reflektor, direktor, dan boom. Pada bagian driven elemen merupakan elemen pemancar/penerima dari antena dan antena yang digunakan adalah dipole atau folded dipole. Kemudian adalah reflektor yang berfungsi sebagai pembatas radiasi atau untuk memantulkan radiasi ke arah berlawanan. Seperti kita ketahui bahwa antena dipole mempunyai pola radiasi omnidireksional dan reflektor akan memantulkan radiasi pada bagian belakang ke arah depan. Selanjutnya ada direktor atau parasitic element, bagian ini berfungsi untuk mengarahkan pola radiasi sehingga antena memiliki nilai gain yang tinggi. Banyaknya direktor yang dipasang bebanding lurus dengan nilai gain dari antena. Bagian terakhir yaitu boom, bagian yang befungsi sebagai holder dari bagian driven elemen, reflektor, dan direktor. Holder biasanya terbuat dari bagian non-konduktor, apabila terbuat bagian konduktor akan mempengaruhi performa dari antena yagi-uda.


Tabel Desain Yagi-Uda 
Pola Radiasi Antena Yagi-Uda

Sekian materi yang disampaikan, mohon maaf apabila ada kata-kata yang salah. Semoga dapat bermanfaat untuk belajar dan sampai jumpa dalam materi selanjutnya.

Beberapa hal yang harus diperhatikan dalam membuat antena

Antena merupakan perangkat elektronik yang menerima atau memancarkan gelombang radio. Antena merupakan perangkat penting dalam komunikasi nirkabel. Antena harus disesuaikan dengan frekuensi yang diinginkan, apabila tidak cocok dengan frekuensi yang diinginkan maka antena tidak akan bekerja. Dalam proses pengiriman, pembangkit sinyal harus disetting frekuensi yang akan digunakan antena dan kemudian antena akan mengubah daya yang dikirim menjadi gelombang elektromagnetik. Namun dalam penerimaan antena akan memotong beberapa kekuatan gelombang elektromagnetik untuk mendapatkan frekuensi yang diinginkan, kemudian akan dikuatkan dan didemodulasi. Pada umumnya antena dapat digunakan untuk melakukan pengiriman maupun penerimaan. Untuk membuat antena yang diinginkan ada beberapa hal yang harus diperhatikan, selanjutnya akan dibahas.
Antena Mikrostrip
Dalam membuat antena tidak boleh sembarang, antena merupakan perangkat yang bisa dibilang sensitive. Jadi harus berhati-hati dalam membuatnya dan juga dalam merawatnya. Berikut dibawah ini beberapa hal yang harus diperhatikan dalam membuat antena :

Frekuensi
1. Frekuensi, merupakan hal yang pertama kita harus perhatikan dalam membuat antena. Karena antena yang akan dibuat harus jelas, untuk diaplikasikan dimana dan secara otomatis harus tahu frekuensi yang akan digunakan. Karena frekuensi nantinya akan mempengaruhi panjang gelombang dan mempengaruhi perhitungan dimensi antena. Untuk menentukan frekuensi alangkah baiknya untuk mengecek terlebih dahulu daftar frekuensi resmi indonesia di KOMINFO agar antena yang dibuat tidak salah dan juga setiap negara memiliki frekuensi berbeda.

Skema Impedansi
2. Impedansi. Untuk memaksimal daya transfer antena yang dikirim maka impedansi merupakan hal yang harus diperhatikan. Antena pengirim dengan antena penerima harus mempunyai impedansi yang sama agar transfer daya maksimal. Dasarnya tidak masalah antena pengirim dengan antena penerima mempunyai impedansi yang berbeda, hanya saja transfer daya tidak akan maksimal dan akan menyebabkan fenomena gelombang pantul. Biasanya antena memiliki impedansi 50 ohm dan 75 ohm, menyesuaikan dengan impedansi konektor yang ada dipasaran.

Material
3. Material. Hal terakhir yang harus diperhatikan yaitu material, karena material juga sangat berpengaruh dalam performa antena. Material yang diguankan harus berbahan material konduktor, dan setiap konduktor memiliki nilai yang berbeda-beda. Nilai yang dimaksud adalah nilai konduktivitas dari konduktor, karena nilai konduktivitas semakin tinggi maka akan semakin baik dalam untuk antena.

Itulah beberapa hal yang harus diperhatikan dalam membuat antena. Selain itu usahakan dalam membuat antena harus teliti dan cermat agar tidak mempengaruhi antena. Semoga ilmu yang diberikan bermanfaat untuk para pembaca.

Pengantar Antena Cerdas

Antena cerdas merupakan jenis antena digital yang dirancang khusus dan memiliki kemampuan dalam pelacakan atau handling sinyal. Jenis antena ini sering digunakan dalam pemrosesan sinyal, radar dan telekomunikasi. Antena ini biasanya dievaluasi oleh kelompok IEEE. Antena cerdas cocok menjadi bagian sistem broadband dan dirkabel diera modern ini  karena memiliki karakterisitik array adaptif. Selain itu ada salah satu jenis antena cerdas yang dinamakan antena smart beam switched. Antena smart beam switched yaitu dapat mentransmisikan sinyal ke arah tertentu. Namun secara umum antena cerdas membantuk mengutamakan transmisi sinyal dalam efesiensi atau yang lainnya. Sehingga pancaran sinyal yang ditargekan lebih tepat dan membuat output menjadi lebih baik.
Skema antena cerdas
Dibawah ini adalah dua tipe dasar dari antena cerdas. Pada tipe pertama adalah antena multibeam. Tipe antena ini pada dasarnya seperti antena pada umumnya namun memiliki ciri khas yaitu memiliki beberapa pola pancar. Tipe lainnya yaitu adalah antena adaptive array, yaitu ante yang memiliki sifat khas pada adaptivenya dan elemen arraynya. Dalam proses penerimaan antena ini akan bekerja memaksimalnya sinyal yang diterima oleh elemen antena dan digabungkan ditambah dengan deraunya. Dalam pengiriman antena ini akan mengarahkan sinyal utama ke yang diingingkan dan akan meminimalkan ke arah gangguan atau noise. Berikut gambar antena multibeam dan antena array adaptive.

Antena multibeam

Antena array adaptive

Selanjutnya dibawah ini adalah keuntungan dan kerugian dari antena cerdas. 

Keuntungannya adalah :

  • Baik antena multibeam dan antena array adaptive memberikan efisiensi tinggi dengan demikian daya tinggi kepada sinyal yang diinginkan. Ketika sejumlah besar elemen antena digunakan pada frekuensi tinggi maka pola radiasi akan semakin sempit, sehingga pola pancar akan semakin terarah. 
  • Antena multibeam akan menekan inteferensi dengan pola radiasi yang sempit dan antena array adaptive akan menekan inteferensi dengan menyesuaikan pola pancarannya.

Kerugiannya adalah :
  • Harga perangkat semacam itu akan menjadi lebih mahal, tidak hanya pada bagian elektroniknya tetapi juga pada dayanya.